Question 1.

a) Class variable: interest_rate, instance variables: name, number, balance.

[5 marks]

b)

def deposit(self, amt):
 self.balance += amt
 return
def withdraw(self, amt):
 if self.balance - amt > 0:
 self.balance -= amt
 return
def add_interest(self):
 i = BankAccount.interest_rate * self.balance
 self.balance += i

[10 marks]

c)
class StudentAccount(BankAccount):
 overdraft_lmt = 1000
 def __init__(self, name, number, balance):
 BankAccount.__init__(self, name, number, balance):
 return
 def withdraw(self, amt):
 if self.balance - amt > overdraft_lmt:
 self.balance -= amt
 return

[10 marks]
Question 2.

class Palindrome(object): # [2 marks]
 def __init__(self):
 pass
 def reverse(self, s): # [8 marks]
 rev = ""
 for i in range(len(s)):
 rev += s[-i-1]
 return rev
 def isPalindrome(self, s): [5 marks]
 if s == self.reverse(s):
 return True
 else:
 return False

def main(): # [10 marks]
 p = Palindrome()
 cases = ['dad', 'peep', 'deed',
 'dude', 'task', 'foobar']
 for case in cases:
 print 'reverse(', case, '):', str(p.reverse(case))
 for case in cases:
 print 'isPalindrome(', case, '):', str(p.isPalindrome(case))

Award more marks for good coding practices, e.g. testing boundary conditions, storing test cases in a linear data structure (ease of extension), and so on.
Question 3.

a)
def sum(n): # iterative
total = 0
for i in range(n):
 total += i
return total

[4 marks]

b)
def sum(nums): # iterative
total = 0
for i in nums:
 total += 1
return total

[5 marks]

c)
i=1
while(i<20):
 print "i = ", i
 i += 1

Be generous about off-by-one errors.

[8 marks]

d) for i in range(20, 0, -1):
 print "i = ", i

Be generous about off-by-one errors.

[8 marks]
Question 4.

a) Anything equivalent to:
for i in range(360):
 forward(1)
 left(1)

[5 marks]

b) Any algorithm is acceptable so long as it covers the entire frame.

[5 marks]

c) Consideration should be given to how the turtle can tell if it has moved off the track. One strategy is to move the turtle forward a pixel or so, then rotate left and right by increasing amounts until one of the sensors detects the track.

[15 marks]
Question 5.

a) A recursive function calls itself.

[2 marks]

b)
```python
def sum(arg):
    if arg == []:
        return 0
    else: return arg[0] + sum(arg[1:])
```

Award two marks for the base case and three for the recursive case. Do not penalise students for not using slicing.

[5 marks]

c) foobar reverses a list. e.g. foobar([1, 2, 3]) returns [3, 2, 1].

Award half marks for stating what the method does, two for a suitable argument and two for a correct return value.

[8 marks]

d)
- iso(3) -> True
- iso(2) -> False
- ise(3) -> False
- ise(2) -> True
- iso returns True if the argument is odd and False otherwise. ise returns True if the argument is even and False otherwise.

Award 2 marks each. Candidates should show their workings.

[10 marks]